I M.Tech - II Semester – Regular Examinations - JULY - 2023

MECHANISM DESIGN AND SYNTHESIS (MACHINE DESIGN)

Duration: 3 hours

Max. Marks: 60

Note: 1. This paper contains 4 questions from 4 units of Syllabus. Each unit carries 15 marks and have an internal choice of Questions.

2. All parts of Question must be answered in one place.

BL – Blooms Level

CO – Course Outcome

			BL	СО	Max. Marks		
	UNIT-I						
1	a)	Explain in detail various phases in design of mechanisms.	L2	CO1	9 M		
	b)	Explain Grubbler criterian for spatial mechanism and reduce the form to apply for planar mechanism.	L2	CO1	6 M		
OR							
2	a)	Classify various types of spatial mechanisms and mention their applications.	L2	CO1	8 M		
	b)	Explain the terms: i) Lower pair ii) Higher pair iii) Kinematic chain iv)Inversion v) Linkage vi) Transmission angle	L2	CO1	7 M		

		UNIT-II					
3	(a)pos(b)pos	blain in brief about Guiding a rocker through two distinct itions Guiding a rocker through three distinct itions	L2	CO2	15 M		
for the constant crank rotation. OR							
4	a)	A crank rocker linkage has a 100 mm frame, a 25 mm crank, 90 mm coupler and a 75 mm rocker. Draw the linkage and find the maximum and minimum value of the transmission angle. Locate both toggle position and record the corresponding crank angle and transmission angle. Explain the procedure for finding position of any point on the Fourbar slider crank mechanism.	L3 L2	CO2 CO2	8 M 7 M		
5	a) b)	UNIT-III Explain following terms in context to kinematic synthesis: i) Function Generation (ii) Structural Error (iii) Precision points Explain function generation with neat sketch using velocity pole method.		CO3 CO3	7 M 8 M		
OR							

6	a)	What is the difference between function	L2	CO3	5 M		
		generation and path generation?					
	b)	A four bar mechanism is to be designed, by	L3	CO3	10 M		
		using three precision points to generate the					
		function $y=x^{1.5}$, for the range $1 \le x \le 4$.					
		Assuming 30° starting position & 120°					
		finishing position for the input link and 90°					
		starting position & 180° finishing position					
		for the output link, find the values of x & y.					
UNIT-IV							
7	a)	Derive the expression for the coriolis	L3	CO4	7 M		
		component of acceleration for any link PQ					
		rotating with an angular velocity ω rad/s					
		about a fixed point O with a point R on it moving along it at a linear velocity v m/s.					
	b)		L2	CO4	8 M		
		compare merits and demerits of them.					
OR							
8	In t	the toggle mechanism shown in Figure, the	L3	CO4	15 M		
	slider D is constrained to move in a horizontal						
	-	path the crank OA is rotating in CCW direction					
		a speed of 180 rpm. The dimensions of					
		ious links are as follows: $OA = 180$ mm, - 240 mm, $AB = 360$ mm and $BD = 540$					
	CB = 240 mm, AB = 360 mm and BD = 540 mm Find: (i) Velocity of slider, (ii) Angular						
	velocity of links AB, CB and BD.						

