I M.Tech - II Semester - Regular Examinations - JULY - 2023

MECHANISM DESIGN AND SYNTHESIS (MACHINE DESIGN)

Duration: 3 hours
Max. Marks: 60
Note: 1. This paper contains 4 questions from 4 units of Syllabus. Each unit carries 15 marks and have an internal choice of Questions.
2. All parts of Question must be answered in one place.

BL - Blooms Level

$$
\mathrm{CO} \text { - Course Outcome }
$$

			BL	CO	Max. Marks
UNIT-I					
1	a)	Explain in detail various phases in design of mechanisms.	L2	CO1	9 M
	b)	Explain Grubbler criterian for spatial mechanism and reduce the form to apply for planar mechanism.	L2	CO1	6 M
OR					
2	a)	Classify various types of spatial mechanisms and mention their applications.	L2	CO1	8 M
	b)	Explain the terms: i) Lower pair ii) Higher pair iii) Kinematic chain iv)Inversion v) Linkage vi) Transmission angle	L2	CO1	7 M

UNIT-II

3		lain in brief about Guiding a rocker through two distinct itions Guiding a rocker through three distinct itions the constant crank rotation.	L2	CO 2	15 M
OR					
4	a)	A crank rocker linkage has a 100 mm frame, a 25 mm crank, 90 mm coupler and a 75 mm rocker. Draw the linkage and find the maximum and minimum value of the transmission angle. Locate both toggle position and record the corresponding crank angle and transmission angle.	L3	CO 2	8 M
	b)	Explain the procedure for finding position of any point on the Fourbar slider crank mechanism.	L2	CO 2	7 M
UNIT-III					
5	a)	Explain following terms in context to kinematic synthesis: i) Function Generation (ii) Structural Error (iii) Precision points	L2	CO 3	7 M
	b)	Explain function generation with neat sketch using velocity pole method.	L2	CO3	8 M
OR					

6	a)	What is the difference between function generation and path generation?	L2	CO3	5 M
	b)	A four bar mechanism is to be designed, by using three precision points to generate the function $\mathrm{y}=\mathrm{x}^{1.5}$, for the range $1 \leq \mathrm{x} \leq 4$. Assuming 30° starting position \& 120° finishing position for the input link and 90° starting position \& 180° finishing position for the output link, find the values of $\mathrm{x} \& \mathrm{y}$.	L3	CO3	10 M
UNIT-IV					
7	a)	Derive the expression for the coriolis component of acceleration for any link PQ rotating with an angular velocity $\omega \mathrm{rad} / \mathrm{s}$ about a fixed point O with a point R on it moving along it at a linear velocity $\mathrm{v} \mathrm{m} / \mathrm{s}$.	L3	CO 4	7 M
	b)	Explain how the followers classified. Also compare merits and demerits of them.	L2	CO4	8 M
OR					
8		he toggle mechanism shown in Figure , the er D is constrained to move in a horizontal the crank OA is rotating in CCW direction a speed of 180 rpm . The dimensions of ious links are as follows: $\mathrm{OA}=180 \mathrm{~mm}$, $=240 \mathrm{~mm}, \mathrm{AB}=360 \mathrm{~mm}$ and $\mathrm{BD}=540$ Find: (i) Velocity of slider, (ii) Angular ocity of links AB, CB and BD .	L3	CO 4	15 M

